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Trend: μs-scale RPCs
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2020
Storage: M.2 NVMe SSD (~ 20 us)
Network: ~ 5 us



Trend: μs-scale RPCs

2

2010
Storage: SATA SSD (~ 90 us)
Network: ~ 100 us

2020
Storage: M.2 NVMe SSD (~ 20 us)
Network: ~ 5 us

× 1/4



Trend: μs-scale RPCs

2010
Storage: SATA SSD (~ 90 us)
Network: ~ 100 us

2020
Storage: M.2 NVMe SSD (~ 20 us)
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Trend: μs-scale SLOs
Remote memory

https: / /

Encryption Cache Storage
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Web serverInternet



Load Imbalance Unexpected user traffic

Packet bursts Redirected traffic due to failure

!
!

Server Overload
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Without overload control, server overload makes almost all 
requests violate its SLO.
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Ideal Overload Control
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Should keep request short, but not empty
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Strawman #1: Server-side AQM
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Drop notification



Strawman #1: Server-side AQM

Server

Clients
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Cost of packet processing is comparable to the service 
time Packet

processing
Request
execution
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Request



Strawman #2: Client Rate limiting
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Server

Clients
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Request

Cost of packet processing is comparable to the service 
time

Hey server, are you busy?

Hey server, are you busy?

Hey server, are you busy?

Hey server, are you busy?

Strawman #2: Client Rate limiting



Breakwater

Server

Clients
RequestCredit Response

drop
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Overload control for μs-scale RPCs with credit-
based admission control, demand speculation, 
and delay-based AQM



Breakwater
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(1) High throughput
(2) Low and bounded tail latency
(3) Fast feedback for the rejected requests
(4) Scalability to a large number of clients



Queueing delay as congestion signal

Server

Clients RequestCredit Response
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Breakwater uses request queueing delay as a 
congestion signal



Server

Clients RequestCredit Response
12

Credit-based admission control
Breakwater controls amount of incoming requests 
with credits



Credit-based admission control

Server

Clients RequestCredit Response

Breakwater controls amount of incoming requests 
with credits
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Credit-based admission control

Server

Clients

For every RTT:
If delay < target:
credit += A

Else:
B = MAX(1 − β $ !"#$%&'$()"'

'$()"'
, 0.5)

credit ×= B

RequestCredit Response

Breakwater controls amount of incoming requests 
with credits
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Credit-based admission control

Server

Clients

For every RTT:
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Breakwater controls amount of incoming requests 
with credits
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Credit-based admission control

Server

Clients RequestCredit Response

Breakwater controls amount of incoming requests 
with credits
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Server

Clients RequestCredit Response

Breakwater controls amount of incoming requests 
with credits
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deregister

Client 1
Client 2
Client 3
Client 4

Credit-based admission control



Message Overhead

Server

Clients RequestCredit Response

Server needs to know which client has demand
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Server

Clients

I have n requests!

RequestCredit Response

Server needs to know which client has demand
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Message Overhead
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Credit-based admission control has lower and bounded 
tail latency but lower throughput.
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Impact of Credit-based admission control



Demand Speculation

Server

Clients

I have n requests!

RequestCredit Response

Breakwater speculate clients’ demand to minimize 
message overhead
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Server

Clients

I have n requests!

RequestCredit Response

(I have n more request)

Breakwater speculate clients’ demand to minimize 
message overhead
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Demand Speculation



Server

Clients RequestCredit Response

Breakwater speculate clients’ demand to minimize 
message overhead
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Server

Clients RequestCredit Response

Breakwater speculate clients’ demand to minimize 
message overhead
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Demand Speculation



Idealcredit credit + demand spec.
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Demand speculation improves throughput with 
higher tail latency

SLO

Impact of Adding Demand Speculation



Credit Overcommitment

Server

Clients RequestCredit Response
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Server issues more credit than the number of 
requests it can accomodate



Incast

Server

Clients RequestCredit Response
20

With credit overcommitment, multiple requests 
may arrive at the server at the same time



Delay-based AQM

Server

Clients RequestCredit Response
20

To ensure low tail latency, the server drops 
requests if queueing delay exceeds threshold.

drop



Delay-based AQM

Server

Clients RequestCredit Response
20

To ensure low tail latency, the server drops 
requests if queueing delay exceeds threshold.

drop

Sorry, rejected

Sorry, rejected



Impact of Adding Delay-based AQM
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SLO

Breakwater achieves high throughput and low and 
bounded tail latency at the same time



Testbed Setup
- xl170 in Cloudlab
- 11 machines are connected to a single switch
- 10 client machines / 1 server machine
- Implementation on Shenango as a RPC layer

Synthetic Workload
- Clients generate request with open-loop Poisson process
- Requests spin-loops specified amount of time at server
- Exponential service time distribution with 10μs average

Evaluation
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(1) Does Breakwater achieves high throughput and low tail 
latency even with demand spikes?

(2) Does Breakwater provides fast feedback for the rejected 
requests?

(3) Is Breakwater scalable to the number of clients?

Evaluation
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Baselines:
DAGOR

priority-based overload control used in WeChat
SEDA

adaptive overload control for staged event-driven architecture



High Goodput with fast convergence
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Breakwater achieves high goodput with fast convergence 
with sudden load shift.



Low and Bounded Tail Latency
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Breakwater has low and bounded tail latency even with 
sudden load shift 



Fast Feedback
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Breakwater notifies clients of rejected request in timely 
manner



Scalability
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Breakwater is more scalable than existing overload 
controls



• Breakwater is a server-driven credit-based overload 
control system for μs-scale RPCs

d

• Breakwater’s key components include
(1) Credit-based admission control
(2) Demand speculation
(3) Delay-based AQM

D

• Our evaluation shows that Breakwater achieves
(1) Low & bounded tail latency with high throughput
(2) Fast feedback for a rejected request
(3) Scalability to many clients
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Conclusion



Thank you!

Questions?
Inho Cho <inhocho@csail.mit.edu>
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inhocho89.github.io/breakwater/
Breakwater is available at 


