ACM SIGCOMM 2017

Credit-Scheduled Delay-Bounded Congestion Control for Datacenters

Inho Cho, Keon Jang*, Dongsu Han

Datacenter Network

Small Latency

< 100 *μs*

Shallow Buffer

< 30 MB for ToR

High Bandwidth

10/40 ~ 100 Gbps

Large Scale

> 10,000 machines

Datacenter Network

Small Latency

< 100 *μs*

High Bandwidth

10/40 ~ 100 Gbps

Shallow Buffer

< 30 MB for ToR

Large Scale

> 10,000 machines

Challenge with small BDP

BDP*(100 μ s, 40Gbps) \approx 300 MTUs

* BDP: Bandwidth-delay Product

Rate-based CC vs. credit-based CC

Prior Work with Bounded Queue

Prior Work with Bounded Queue

Prior Work with Bounded Queue

- Credit-based
 Flow Control

 InfiniBand

 RoCE/DCQCN

 Centralized

 FastPass
 - How can we get the benefits of credit-based flow control on Ethernet?
- Does not scale
 to datacenter
 Requires switch
 Support
 Head of line
 Global time sync
 Single point of failure

Goal & Our Approach

Goal

To achieve **bounded queue** even with heavy incast using **Ethernet switches**.

ExpressPass

Proactive end-to-end credit-based congestion control using unreliable credits.

ExpressPassSwitch behavior

Senders Receivers

Switch behavior

Senders

Receivers

Switch behavior

Credit-scheduled data transmission

Challenges

Challenges	Techniques to address
Signaling overhead	Piggybacking to handshake packets
Non-zero queueing	Bounded queue
Credit waste	Credit feedback control
Fair drop on switch	Jitter, variable-sized credits
Path symmetry	Deterministic ECMP, packet level load balancing
Multiple traffic classes	Prioritizing credits rather than data

Signaling Overhead

 $\max(buffer) = C * \{\max(delay) - \min(delay)\}$

^{*} Trident+ (10G), Trident II (40G), Tomahawk (100G)

 $\max(buffer) = C * \{\max(delay) - \min(delay)\}$

^{*} Trident+ (10G), Trident II (40G), Tomahawk (100G)

Credit Waste

Credit Waste

Credit Feedback Control

Proactive Congestion Control

Prevents the congestion <u>before</u> actual congestion happens using credits.

Cheap credit drop

We can increase rate aggressively.

Bandwidth probing is cheap.

Convergence can be faster.

Credit Feedback Control

Senders Receivers

Credit Feedback Control

Proactive Congestion Control

Prevents the congestion *before* actual congestion happens using credits.

Credit drop is Cheap

Makes bandwidth probing cheap.

Can increase rate aggressively.

Converges faster.

Credit Waste & Convergence Time

Level of Aggressiveness

Level of Aggressiveness

Credit Waste & Convergence Time

Level of Aggressiveness

Level of Aggressiveness

Evaluation Setup

Testbed setup

- Dumbbell topology
- Implementation on SoftNIC
- 12 hosts (Xeon E3/E5) connected to single ToR (Quanta T3048)
- Each host has 10Gbps x 1port

NS-2 Simulation Setup

- Fat-tree topology
- 192 hosts / 32 ToR / 16 aggr. / 8 core switches
- Each host has 10Gbps x 1port

Evaluation

- (1) Does ExpressPass provides low & bounded queueing with realistic workloads?
- (2) Is the convergence fast and stable?
- (3) How low & bounded queuing and fast & stable convergence translate into the flow completion time?

Realistic Workloads

	Data Mining	Web Search	Cache Follower	Web Server
0 – 10KB (S)	78%	49%	50%	63%
10 – 100KB (M)	5%	3%	3%	18%
100KB-1MB (L)	8%	18%	18%	19%
1MB- (XL)	9%	20%	29%	_
Average flow size	7.41MB	1.6MB	701KB	64KB

Realistic Workloads

	Data Mining	Web Search	Cache Follower	Web Server
0 – 10KB (S)	78%	49%	50%	63%
10 – 100KB (M)	5%	3%	3%	18%
100KB-1MB (L)	8%	18%	18%	19%
1MB- (XL)	9%	20%	29%	-
Average flow size	7.41MB	1.6MB	701KB	64KB

Bounded Queue

cache follower workload / load 0.2 - 0.4 / 0KB ~ (All Size)

Low Average Queue

cache follower workload / load 0.6 / 0KB -

Low Average Queue

cache follower workload / load 0.6 / 0KB -

Fast & Stable Convergence

Fast & Stable Convergence

cache follower workload / load 0.6 / 0 - 10KB

cache follower workload / load 0.6 / 0 - 10KB

cache follower workload / load 0.6 / 1MB -

cache follower workload / load 0.6 / 1MB -

Conclusion

- ExpressPass is end-to-end, credit-scheduled, and delay-bounded congestion control for datacenter.
- ExpressPass propose a new **proactive** datacenter congestion control.
- Our evaluation on testbed and ns-2 simulation show that ExpressPass achieves
 - (1) Low & bounded queueing
 - (2) Fast & stable convergence
 - (3) Short flow completion time especially for small flows

Thanks

Happy to answer your questions

Credit Queue Capacity vs. Utilization

Fairness

