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Datacenter Network

Small Latency High Bandwidth
< 100 ps 10/40 ~ 100 Gbps
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Congestion control is more challenging in datacenter.
Shallow Buffer Large Scale
< 30 MB for ToR > 10,000 machines
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Challenge with small BDP

BDP*(100us, 40Gbps) =~ 300 MTUs
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Rate-based CC + incast traffic
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Rate-based CC + incast traffic
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Rate-based CC vs. credit-based CC
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DCTCP Credit-based Approach
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Prior Work with Bounded Queue
Credit-based
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Prior Work with Bounded Queue

Credit-based
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How can we get the benefits of credit-based

flow control on Ethernet?
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Goal & Our Approach

Goal

To achieve bounded queue even with heavy
Incast using Ethernet switches.

ExpressPass

Proactive end-to-end credit-based congestion
control using unreliable credits.



ExpressPass
End host behavior
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ExpressPass
End host behavior

% Credit I Credit Request
[ ] Data I Credit Stop
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ExpressPass
Switch behavior
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ExpressPass
Switch behavior

o Credit [] Data
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Switch throttles credits.
(Throttling rate = 5 %)
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ExpressPass
Switch behavior

o Credit [] Data

Switch forwards the data

symmetric to the credit.
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Credit-scheduled data transmission
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Challenges

Challenges

Technique

s to address

Signaling overhead

Piggybacki

ng to handshake packets

Non-zero queueing

Bounded queue

Credit waste

Credit feedback control

Fair drop on switch

Jitter, varia

ble-sized credits

Path symmetry

Determinis
balancing

tic ECMP, packet level load

Multiple traffic classes

Prioritizing

credits rather than data
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Signaling Overhead
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Maximum Bound of Data Queue
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Maximum Bound of Data Queue

<% Credit [ ] Data  delay =
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Sender 3
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Maximum Bound of Data Queue
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Maximum Bound of Data Queue

max(buffer) = C * {max(delay) — min(delay)}
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* Trident+ (10G), Trident Il (40G), Tomahawk (100G)
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Credit Waste

No more[]!

% Credit I Credit Request
[ ] Data I Credit Stop
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Credit Waste

No more[]!

Sender

% Credit I Credit Request
[ ] Data I Credit Stop
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Credit Feedback Control

Proactive Congestion Control

Prevents the congestion before actual congestion happens
using credits.

Cheap credit drop
We can increase rate aggressively.
Bandwidth probing is cheap.
Convergence can be faster.

rate
>

time
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Credit Feedback Control
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Credit Feedback Control

Proactive Congestion Control

Prevents the congestion before actual congestion happens
using credits.

Credit drop is Cheap
Makes bandwidth probing cheap.
Can increase rate aggressively.
Converges faster.

rate
>

time
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Credit Waste & Convergence Time
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Credit Waste & Convergence Time
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Evaluation Setup

Testbed setup
* Dumbbell topology
* Implementation on SoftNIC

« 12 hosts (Xeon E3/E5) connected to single ToR (Quanta T3048)
« Each host has 10Gbps x 1port

NS-2 Simulation Setup

* Fat-tree topology
« 192 hosts / 32 ToR / 16 aggr. / 8 core switches

« Each host has 10Gbps x 1port



Evaluation

(1) Does ExpressPass provides low & bounded
gueueing with realistic workloads?

(2) Is the convergence fast and stable?

(3) How low & bounded queuing and fast & stable
convergence translate into the flow completion

time?
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Realistic Workloads

flow size

Data Web Cache | Web

Mining | Search | Follower | Server
0 — 10KB (S) 78% 49% 50% 63%
10 — 100KB (M) 5% 3% 3% 18%
1T00KB-1MB (L) 8% 18% 18% 19%
TMB- (XL) 9% 20% 29% -
Average 741MB| 16MB| 701KB| 64KB
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Bounded Queue
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Low Average Queue
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Low Average Queue
cache follower workload / load 0.6 / OKB —

KB KB %12
100 - %29 1000 =4 3753 x6.6
10 - 6.18 = 100 | X32 79.28
32.3 3 TR
T x1.5 (;(183 O ----- LR e A
| 0.77 o )
1 9__5 _______ Lo N ey w BN VB § 10
I I | 1 I I I |

X-Pass RCP DCTCP DX HULL X-Pass RCP DCTCP DX HULL



Throughput
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Fast & Stable Convergence
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Fast & Stable Convergence
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Flow Completion Time
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Flow Completion Time
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Flow Completion Time
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Flow Completion Time
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Conclusion

* ExpressPass is end-to-end, credit-scheduled, and
delay-bounded congestion control for datacenter.

* ExpressPass propose a new proactive datacenter
congestion control.

* Our evaluation on testbed and ns-2 simulation show
that ExpressPass achieves
(1) Low & bounded queueing
(2) Fast & stable convergence
(3) Short flow completion time especially for small flows
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Thanks

Happy to answer your questions



Credit Queue Capacity vs. Utilization
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